

Cálculo Diferencial e Integral I 1^o Teste

Campus da Alameda

9 de Abril de 2011, 13 horas

LEIC (Prova B)

Apresente todos os cálculos e justificações relevantes

1. Considere

$$A = \left\{ x \in \mathbb{R} : \frac{x - 2}{e^x(x^2 - 1)} \le 0 \right\}, \qquad B = \left\{ x \in \mathbb{R} : |x - 3| \le 1 \right\}, \qquad C = B \setminus A.$$

- a) Escreva cada um dos conjuntos B e C sob a forma de intervalo ou reunião de intervalos e mostre que $A =]-\infty, -1[\cup]1, 2]$.
- b) Determine, se existirem em \mathbb{R} , inf A, sup A, min C, inf $(A \cap B)$, máx $(B \setminus \mathbb{Q})$.
- c) Decida justificadamente se são verdadeiras ou falsas as seguintes afirmações:
 - (i) Toda a sucessão crescente de termos em $A \cap \mathbb{R}^+$ é convergente.
 - (ii) Toda a sucessão de termos em B tem uma subsucessão convergente.
 - (iii) Toda a sucessão estritamente decrescente de termos em B converge para 2.
- 2. Calcule ou mostre que não existem (em $\overline{\mathbb{R}}$) os seguintes limites de sucessões:

$$\lim \frac{4^n + n!}{1 - 6^n}$$
, $\lim \left(1 - \frac{3}{n^3}\right)^{n^3 + 1}$, $\lim \sqrt[n]{\frac{1 + \pi^n}{n^2}}$

3. Considere uma sucessão $(b_n)_{n\in\mathbb{N}}$ definida por

$$\begin{cases} b_1 = e, \\ b_{n+1} = \frac{e}{n+1}b_n, & \text{se } n \ge 1. \end{cases}$$

a) Use indução matemática para mostrar que $b_n > 0$, para todo o $n \in \mathbb{N}$ e conclua que

$$\forall_{n\geq 2} \quad \frac{b_{n+1}}{b_n} \leq 1$$

- b) Justifique que (b_n) é convergente e mostre que $\lim b_n = 0$.
- c) Use indução matemática para mostrar que

$$\forall_{n \in \mathbb{N}} \quad b_n = \frac{e^n}{n!}$$

4. Calcule ou mostre que não existem (em $\overline{\mathbb{R}}$) os seguintes limites

$$\lim_{x \to e} \frac{x - e}{x \operatorname{sen}(x - e)}, \qquad \lim_{x \to +\infty} \frac{x^3 + x \cos x^2}{3 - x^5}$$

 ${f 5.}$ Considere a função real de variável real g tal que

$$g(x) = \begin{cases} \log(1-x) & \text{se } x < -1\\ \arcsin x & \text{se } -1 \le x < 1\\ \arctan \frac{1}{x-1} & \text{se } x > 1 \end{cases}$$

- a) Calcule (se existirem em $\overline{\mathbb{R}}$) $\lim_{x\to-\infty} g(x)$, $\lim_{x\to-1} g(x)$ e $\lim_{x\to+\infty} g(x)$.
- b) Estude g quanto a continuidade. Será g prolongável por continuidade ao ponto x=1? Justifique.
- **6.** Seja $(a_n)_{n\in\mathbb{N}}$ o termo geral de uma sucessão de termos em \mathbb{R}^+ . Prove que:
 - a) Se $\lim \frac{a_{n+1}}{a_n} = \alpha < 1$, então a sucessão (a_n) é convergente e $\lim a_n = 0$.
 - b) Se $\lim \frac{a_{n+1}}{a_n} = \alpha > 1$, então $\lim a_n = +\infty$.