

Cálculo Diferencial e Integral I

1º Teste (Versão B) 14 de Novembro de 2020

LEIC-T, LEGI, LETI, LEE

Apresente todos os cálculos e justificações relevantes

(5,0) I. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{x \in \mathbb{R}: \left|\frac{x-4}{x+2}\right| \geq 1\right\}, B = \left\{\frac{2}{4k-1}: k \in \mathbb{Z}\right\}, C = \left\{x \in \mathbb{R}: \log x \leq 1\right\}.$$

a) Identifique os conjuntos A e C e verifique que

$$A \cap C = [0, 1].$$

- b) Determine, ou justifique que não existem, inf A, min B, inf $(B \setminus (A \cap C))$, min $(B \setminus (A \cap C))$, inf $(C \setminus B)$.
- c) Decida justificadamente se são verdadeiras ou falsas as seguintes afirmações:
 - (i) Existe uma sucessão estritamente decrescente de termos em B que é convergente.
 - (ii) Se $f:A\cap C\to \mathbb{R}$ é uma função contínua, f tem mínimo.
 - (iii) Se $g: C \to \mathbb{R}$ é crescente e minorada o seu ínfimo é $\lim_{x\to 0} g(x)$.
- (3,5) II. Considere a sucessão (b_n) definida por

$$\begin{cases} b_1 = 5, \\ b_{n+1} = \sqrt{2b_n + 3} + \frac{1}{n}, & \text{se } n \ge 1. \end{cases}$$

- a) Mostre que $b_n \in [3, 5]$, para todo o $n \in \mathbb{N}_1$.
- b) Mostre que (b_n) é uma sucessão monótona.
- c) Justifique que (b_n) é convergente e calcule o seu limite.
- (3,5) III. Calcule, ou mostre que não existem em $\overline{\mathbb{R}}$, os seguintes limites de sucessões:

a)
$$\lim \operatorname{sen}\left(\frac{1}{n}\right) \cos\left(\frac{n\pi}{4}\right)$$
, b) $\lim \frac{n^2+1}{n\left(2+ne^{\frac{1}{n}}\right)}$, c) $\lim \left(\frac{(n!)^2}{(2n)!}\right)^{1/n}$.

(6,0) **IV.** Seja $\alpha \in \mathbb{R}$. Define-se a função $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ por

$$f(x) = \begin{cases} e^{-\arctan(1/x)}, & \text{se } x > 0, \\ \alpha + e^{-\arctan(1/x)}, & \text{se } x < 0. \end{cases}$$

- a) Determine α de maneira a f ser prolongável por continuidade ao ponto 0.
- b) Designe por q o prolongamento por continuidade de f a 0.
 - i) Calcule $\lim_{x\to+\infty} g(x)$ e $\lim_{x\to-\infty} g(x)$ se existirem.
 - ii) Determine o contradomínio de g.
- (2,0) V. Seja $h: \mathbb{R} \to \mathbb{R}$ uma função contínua verificando $h(0) > h(\pi/2) = h(-\pi/2)$.

Decida se pode garantir que a função composta definida por $\psi(x) = h(\operatorname{arctg}(x))$ possui ou não um máximo absoluto.